Ionization and Acceleration of Radioactive Ion Beams at the 88" Cyclotron

M.A. McMahan, Z.Q. Xie, J. Cerny, F. Guo, P. Haustein[†], R. Joosten, R.M. Larimer, C.M. Lyneis, E.B. Norman, J.P. O'Neil[†], J. Powell, M.W. Rowe, H.F. VanBrocklin[†], D. Wutte, and X.J. Xu

BEARS (Berkeley Experiments with Accelerated Radioactive Species) has been described in an earlier report [1]. As part of the BEARS project, radioactive species are cryogenically trapped, ionized in the AECR-U ion source, accelerated in the 88-Inch Cyclotron and delivered to one of several experimental areas. Maximizing the efficiencies for this process is an important element of the overall project. A second critical element is to minimize the contamination from other species. Both factors will contribute significantly to the applicability of this technique.

In initial studies, ¹¹C and ¹⁴O were produced at the 88-Inch Cyclotron using protons from the ECR ion source. The activity (in the form of CO₂) was cryogenically trapped and then injected into the AECR-U. A NaI detector was used to measure the activity at the trap. After release into the AECR-U, the source was tuned and the charge states extracted, analyzed, and stopped in a Faraday Cup. The activity at the Faraday Cup was measured using a shielded Ge detector. After correction for half-life and detector efficiency, an ionization efficiency was calculated from the ratio of the two detector signals.

The ionization efficiencies are listed in Table 1 in comparison with those for the stable isotopes 12 C and 16 O measured with a calibrated CO_2 leak. The highest efficiency for a single radioactive ion species was 11% for 11 C $^{-4}$, a factor of 2 lower than the efficiency for 12 C $^{-4}$.

Acceleration of the ¹¹C¹⁴ ions through the 88-Inch Cyclotron has been achieved in several test runs and the first physics experiment completed [2]. The highest intensity achieved was 1x10⁸ ¹¹C ions/sec at the experimental station

The analog beam ²²Ne is used to pre-tune the cyclotron, then the frequency shifted to ¹¹B and ¹¹C. The frequency difference is proportional to the mass difference between the species, the

energy and the Cyclotron frequency. At E/A=10 MeV, ²²Ne and ¹¹C are separable, but not ¹¹C and ¹¹B. Therefore contamination from ¹¹B in the source becomes a large concern.

The first measurements of accelerated residual ¹¹B gave an intensity of <100 less than that of the ¹¹C beam. Subsequently, however, boron was run from the source for a different application and this led to increased ¹¹B intensities (a factor of 100 greater than the ¹¹C beam) even months later.

In order to reliably obtain a ^{11}C beam free of contamination, a stripper was placed between the Cyclotron and the main switching magnet. At E/A>6 MeV, the stripping from $+4\to+6$ is 99% efficient. For experiments at $E/A\le 1$ MeV, if a boron-free beam is necessary it will become most efficient to tune $^{11}C^{+6}$ directly from the AECR. This will decrease the beam intensity from the source by a factor of ≈ 5 , to $2x10^7$ ions/sec. In the near future, a development project will begin to explore ways to improve the mass resolution of the Cyclotron.

Footnotes and References

- † Biomedical Isotope Facility, Life Sciences Division
- ‡ Brookhaven National Laboratory
- 1. J. Powell et al, this report
- 2. R. Joosten et al, this report

Table 1. Ionization Efficiencies

Ion	Ionization Efficiency (%)				
	RIBs	Stable Beams			
11,12 C $^{+3}$	4				
$^{11,12}C^{+4}$	11	23			
$^{11,12}C^{+5}$	4	15			
$^{11,12}C^{+6}$	2				
^{14,16} O ⁺⁶	3.6	33			
$^{14,16}O^{+7}$	1.2	7.4			
$^{14,16}O^{+8}$	0.4				